
Guiding Novice Programmers: LLM-Enhanced IDEs for
Learning and Debugging
Gregory Charles K. Tiong1,∗,†

1 De La Salle University Manila 2401 Taft Avenue, Manila

Abstract
Debugging is an essential skill for every programmer, but is overlooked, time-consuming, and prone to error
tasks. While various debugging tools like IDE debuggers and Automatic Program Repair (APR) aim to streamline
the process, these are frequently challenging for experienced developers and novices alike to navigate. The rise
of LLMs and introduction of ChatGPT in 2022 marked a significant shift in this field, with researchers finding that
it performs comparably or even surpasses APR tools. In addition, its conversational interface is user-friendly and
intuitive, making it a preferred alternative to more traditional interfaces. However, the accuracy and performacne
of LLMs tend to deteriorate as the project grows, making them an unsustainable option in the long term. This
research will focus on leveraging LLMs to support novices by teaching them debugging skills and how to navigate
debuggers effectively, acknowledging that humans still hold a clear advantage over automatic debugging tools in
complex projects.

Keywords
Large Language Model, Debugging Tool, Novice Programmers

1. Introduction

As we advance toward a more technologically oriented society, computer programming has become
a crucial skill that extends beyond traditional computer science roles and even into fields such as
engineering and mathematics [1]. This invaluable skill is essential for developing cutting-edge
technologies and creating solutions across a vast array of industries and disciplines. However, the
dynamic and continuously evolving nature of technologies and software systems inevitably result in
the emergence of bugs due to varying factors such as the deprecation of old features, addition of new
functionalities, and code refactoring. When left undetected, these can have severe consequences and
may even lead to global system failure for companies. The longer these defects remain undiscovered in
the software lifecycle, the more effort and money are required to patch these [2]. These shed light
on one of the most important and fundamental components of programming: debugging, which is a
necessary and critical skill for all programmers.

Debugging refers to the process of localizing, understanding, and repairing any defects found in
codes [3]. It is essential in ensuring that various softwares are maintained, reliable and functioning
accordingly. However, it is a complex and time-consuming task that may take up to 30 to 90% of
the software development process [4]. Moreover, it often causes struggle, frustration, and negative
emotions which leads to many developers to view it as a tedious and daunting activity [5]. One reason
for this is that it requires developers to be competent in various areas such as having a strong ability to
logically comprehend code, track bugs, and implement fixes which makes it especially demanding
for those with limited experience [1]. In addition to this, Whalley et al. [5] also stated that students
and novices, in particular, face difficulties when debugging due to their fragile understanding of the
subject. Additionally, programmers also encounter difficulties with debugging due to the absence of a
systematic and methodical approach, sometimes over-relying instead on ineffective methods such as

CHIRP 2025: Transforming HCI Research in the Philippines Workshop, May 08, 2025, Baguio, Benguet, Philippines
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open gregory\protect\TU_charles\protect\TU_tiong@dlsu.edu.ph (G. C. K. Tiong)
doclicense-CC-by-88x31.pdf© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:gregory\protect \TU _charles\protect \TU _tiong@dlsu.edu.ph
https://creativecommons.org/licenses/by/4.0/deed.en

trial and error or excessive use of print statements [6][5]. Despite these challenges, debugging remains
an overlooked and neglected aspect of programming education, with inexperienced programmers
often expected to develop this skill solely as a byproduct of learning to code. This issue is further
exacerbated by a notable absence of formal learning models and a lack of clarity on effective ways to
teach debugging [5]. To address these challenges, some developers rely on debugging tools to enhance
efficiency and organization.

Debugging tools have evolved significantly through various generations of increasing complexity
and functionality [7]. Today, some of the most widely used debugging tools are integrated into IDEs like
Eclipse1, Visual Studio Code2, and IntelliJ IDEA3, providing features such as step-by-step executions and
breakpoints to streamline the debugging process and allow them to gain a better overall understanding
of the code [8]. However, developers—especially students and novice programmers—often avoid using
IDE debuggers due to usability issues and a lack of formal training [6][9]. For instance, Ko et al. (2023)
[9] discovered that the biggest hindrance in the usage of a debugger is the effort required to learn and
understand proper utilization of the tool. Moreover, participants noted that the usage of debuggers can
increase their efficiency especially in more complex projects. Similarly, Böttcher et al. (2016) [10] also
conducted a study in which students attempted to follow a structured debugging process but struggled
with using the debugger, prompting researchers to provide additional guidance. These findings suggest
that debuggers can be highly effective once users develop proficiency in using them. However, there is
a notable gap in the literature when it comes to understanding the specific factors that make novice
programmers feel overwhelmed by debuggers.

Another prominent debugging tool are automatic program repair (APR) tools and have become a
prominent research area and choice for a debugging tool, with extensive studies conducted on their
capabilities and performance. APR tools aim to fix bugs or errors automatically without human input.
Its process involves firstly identifying suspicious code, generating possible patches, and validating
them using a test suite. The final output is a repair report, which comprises of two parts: the log and
patch output. The former shows the suspicious code and list of attempted patches used while the patch
output shows the correct patch if it exists [11]. In addition, major corporations such as Meta and Fujitsu
are actively investigating the practical applications of APR in real world environments and systems
[12]. Similar to IDE-debuggers, many experienced developers and novices often avoid or struggle with
these debugging tools due to their complex and confusing nature. This is supported by a study by
Zhang et al. [11] that highlighted significant limitations, such as unintuitive user interfaces that hinder
navigation and integration into debugging workflows. Moreover, the repair reports produced by APRs
were often unclear, inaccurate, and difficult for users to interpret.

In 2022, there has been a growing exploration of Large Language Model (LLM)-based error repair
methods, given that modern LLMs have shown remarkable capabilities and performance on debugging
tasks [13]. Among these, OpenAI’s GPT models stands out as one of the most renowned and researched
LLMs and ChatGPT having significantly influenced various fields with its advanced conversational
and generative AI capabilities [14]. Furthermore, these conversational LLM-based chatbots are
user-friendly and easy-to-use tools that possess the capability to debug code. Although LLMs may
perform comparably to or even surpass other APR techniques, both types of tools often exhibit low
accuracy, making sole reliance on them ineffective for resolving all bugs [15][16][17]. Additionally, As
LLMs continue to evolve and new versions are introduced, existing datasets used to evaluate their
debugging performance have become less reliable due to data leakage. This occurs when evaluation
problems are already included in the models’ training data, which impacts performance results. As a
result, there is a growing need for the development of new, carefully curated datasets to fairly and

1https://www.eclipse.org/
2https://code.visualstudio.com/
3https://www.jetbrains.com/idea/

https://www.eclipse.org/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/
https://www.eclipse.org/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/

accurately assess the capabilities of newer LLMs.

With these issues, this paper aims to create a debugging tool that employs an LLM to engage in
conversational interactions with students, guiding and teaching them through the process of systematic
debugging while also helping them navigate and understand the use of IDE-integrated debuggers.
Additionally, the paper aims to create a new dataset that addresses issues in existing datasets, such as
data leakage. Various LLMs will be evaluated on their debugging performance using this dataset, and
the LLM with the best debugging performance will be selected for the tool based on these evaluations.
It also explores the usability challenges that contribute to developers’ difficulties in using traditional
debugging interfaces. Overall, the paper aims to empower novices to become more effective debuggers,
emphasizing the importance of human reasoning in debugging—especially as APR and LLM-based tools
may yield inconsistent or inaccurate results especially with complex projects.

2. Review of Related Literature

2.1. Debugging Tools Experience

As discussed in section 1, debugging tools have evolved through various generations, with today’s most
common being IDE debuggers and APR tools. Despite their shared goal of aiding programmers to
accelerate the debugging process, both manual and automated tools face common challenges: they are
difficult to use and navigate due to their complexity and lack of formal education in utilizing these tools.

This is supported by numerous studies such as by Beller[6] wherein their research addressed a gap
in understanding different developers’ debugging behaviors wherein they firstly conducted a survey
which revealed that 81.3% of 143 respondents use IDE debuggers, with the breakpoint feature being the
most utilized. However, a field study using WATCHDOG 2.0 to monitor the overall coding behavior
in Eclipse and IntelliJ showed a significant discrepancy, as 71.2% of 458 developers did not use the
IDE debuggers. Additionally, interviews revealed that developers prefer printf debugging due to its
universality across programming languages. Participants also noted that debuggers are difficult to use,
not user-friendly, hinder self-exploration, and there is lack of education on how to operate these, as
many developers are self-taught. Similarly, Zayour and Hamdar [18] conducted a qualitative study
on IDE debugging, finding that developers favored features such as step execution and breakpoints.
However, they also expressed a desire for more advanced debugging tools, noting that line-of-code
based debugging is becoming less effective due to the growing complexity of systems and code.
Shifting our focus toward novices’ experiences, Böttcher et al. (2016) [10] conducted an experiment
involving self-learning materials and a subsequent lecture on debugging for students. During the
initial run, students were overwhelmed by the IDE debugger. Thus, the lesson and lecture were
revised to include formal instruction and guidance on using the debugger, leading to improved outcomes.

Regarding APR tools, Zhang et al. (2022) [11] conducted a comparative study evaluating manual
program repair without the usage of tools against three APR tools: PraPR (template-based), SimFix
(heuristic-based), and ACS (constraint-based). The study found that APR tools can reduce debugging
time for developers. Participants noted that APRs effectively provide fault localization, usable patches,
and can accelerate the debugging process. However, the study also highlighted significant drawbacks,
including non-user-friendly interfaces that complicate navigation and integration into existing
debugging processes. Additionally, the repair reports generated by these tools were often confusing,
inaccurate, and difficult to understand. In a similar study, Tao et al. (2014) [19] collected feedback from
developers on using APRs as debugging aids. The qualitative data revealed that APRs can speed up the
initial debugging process, simplify problem recognition, and offer valuable suggestions for developers
to address issues independently. However, negative feedback indicated that APRs can be misleading,
incomplete, and may either over analyze or generalize the debugging problems, leading to potential
confusion.

Aside from these, AI programming assistants such as Copilot have already been employed and are
continuously going through updates as time passes [20]. The researchers conducted a study to explore
the reasons why developers choose to utilize or avoid AI-powered coding assistants. The findings
revealed that the primary motivation for using these tools is efficiency, particularly through features
like autocompletion and leveraging LLMs as a search engine. Conversely, the main reason for not
using them is concerns over code accuracy. Additionally, participants suggested various improvements,
including better handling of programs with cross-file dependencies, enhanced personalization and
feedback mechanisms, as well as more advanced code analysis capabilities. Studies found that AI
coding agents are primarily utilized for code completion, debugging, and code generation[21]. However,
participants also reported several challenges and expectations, including poor performance in complex
tasks, low accuracy in debugging, accessibility and costs.

2.2. Large Language Models (LLMs)

Large Language Models (LLMs) are advanced systems that have the ability to understand and generate
human-like languages and texts using AI. These models are trained on a large amount of data and
undergo numerous pre-processing steps [22]. LLMs can be categorized into three types: encoder-only
models like BERT, decoder-only models like OpenAI’s GPT models and LLama, and encoder-decoder
models like CodeT5 which results in the research utilizing different LLM types [11]. Models that
leverage an encoder-only architecture excel at tasks involving natural language understanding (NLU),
while those with a decoder-only architecture are best suited for natural language generation (NLG). On
the other hand, encoder-decoder models are ideal for sequence-to-sequence (Seq2Seq) tasks. Aside
from this, the method of how the model is utilized in a zero-shot, one-shot, or a few-shot setting, can
significantly impact the results. In zero-shot scenarios, the model is tasked with no prior examples,
while in one-shot and few shot it receives one or multiple examples are provided to the model
respectively. Furthermore, utilization of leveraging prompt engineering and techniques is a powerful
strategy to optimize the model’s performance [23]. Nevertheless, LLMs such as OpenAI’s GPT models
tends to struggle more and their performance deteriorates with complex tasks [24]. Another important
point to note is the non-deterministic nature of LLMs in code generation, which, while introducing
some variability, also fosters greater creativity [25].

Usability is a major concern in debugging tools, and because of this, ChatGPT’s conversational
interface is often preferred over traditional ones due to its more intuitive, human-like interactions.
Studies have shown that users favor ChatGPT for its user-friendly design, its ability to explain
concepts effectively, and its structured, natural dialogue outputs [26][27]. These strengths support
the integration of ChatGPT into educational environments. However, a drawback of this tool is the
accuracy and quality of its outputs depend heavily on how prompts are formulated. A common
theme across multiple studies is the critical role of prompt design, which significantly influences
themodel’s performance, especially in technical domains like programming and debugging[27] [16] [28].

Initial research highlights the diverse capabilities of GPT, such as personalized learning, concept
explanation, essay writing, code generation, and more [14][29]. Several studies have also evaluated its
effectiveness in debugging by developing various debugging datasets and benchmarks, which were
used to assess the performance of GPT and other LLMs in this area. Several studies have highlighted
the performance of GPT-based models in APR tasks. Sobania et al. (2023) [16] evaluated the GPT
model from January 9, 2023, against two learning-based APR tools, Codex and CoCoNut, along with
ten traditional APR tools, using the QuixBugs benchmark. GPT solved 19 out of 40 problems, closely
matching Codex (21) and CoCoNut (19), while outperforming all traditional APR tools, which solved
only 7. Interestingly, its performance improved to 31 out of 40 when human-provided hints were added,
emphasizing the importance of human interaction. Similarly, Xia and Zhang (2023) [17] introduced
ChatRepair, a gpt-3.5-turbo-0301-based APR system that outperformed other learning-based APR

methods across multiple benchmarks (Defects4j 1.2, 2.0, and QuixBugs). The tool resolved significantly
more defects than CodexRepair and AlphaRepair, showing GPT’s strong potential in automated
debugging. These findings collectively underscore GPT models’ robust debugging capabilities,
especially when combined with human input.

While prior studies highlighted strong performance by GPT-based models on existing benchmarks
(Defects4j & QuixBugs), evidence from a study by Zhang et al. (2023) [15] suggested that GPT was
already familiar with various datasets and may be relying on its training data in debugging. To address
this, the researchers introduced a new dataset, EvalGPTFix, which includes 151 problems. Notably, its
performance improved further by solving 9 additional defects when detailed prompts were utilized
which supports the importance of prompt formulaiton. Similarly, Tian et al. (2024) [30] introduced
the DebugBench benchmark to address limitations found in existing datasets—such as data leakage
and a lack of bug diversity—including those present in EvalGPTFix. The studied evaluated multiple
open-source and closed-source models, including ChatGPT, LLaMA, and others, comparing their
performance against developers with a minimum of four years of experience across 18 distinct bug
types. The results indicated that experienced human debugging remained the most effective, with
closed-source models performing slightly worse and open-source models achieving the lowest accuracy.

2.3. Teaching Debugging

While there is a lack of attention towards debugging education, there have been a number of studies
that sought to address this through the teaching of created processes and frameworks. For instance,
Böttcher et al. (2016) [10] proposed a structured approach to systematically teach debugging to students.
Their method focused on a divide-and-conquer strategy for bug localization, combined with instruction
on effective debugger usage. However, results revealed that majority of them decided to not utilize the
approach despite being told to do so. Another example is the study by Michaeli and Roimeike (2019)
[31], which employed a pre-post control group design to evaluate the impact of a systematic debugging
process as an intervention for students. They discovered that the utilization of a structured approach
has a positive impact on the the self-efficacy and performance of students in debugging. Similarly, Li et
al. (2019) [32] connected studies on debugging based on the framework created by Jonassen & Hung
(2006) [33] which is as follows:

• Domain Knowledge: Refers to the core theories and principles that a system’s design is based
on. In debugging, this corresponds to the knowledge and understanding of the programming
language.

• System/Device Knowledge:

– Topological Knowledge: Involves the visual representation of the system’s structure and
components, equivalent to understanding the package hierarchy, directory structure, or the
structure of methods/functions within a program.

– Functional Knowledge: Refers to understanding the function of system components and
the behavior of their interactions, corresponds to understanding how the program functions
as a whole, including the relationships between different parts or programs.

• Procedural Knowledge: Refers to the understanding of how to perform specific actions or tasks,
such as setting up a test suite or utilizing IDE-debugger features.

• Strategic Knowledge:

– Global Strategies: Strategies that can be applied to any type of system/program, such as
forward/backward tracing or a breadth-first approach to debugging.

– Local Strategies: Strategies specific to a system/program, such as printf debugging, using
meaningful variable names, and adding comments.

• Previous Experience: Crucial factor in expertise for troubleshooting and debugging, as it
enables the recognition of recurring patterns or common bugs.

Aside from this, the researchers also outlined the debugging process based on the troubleshooting
model which is as follows:

1. Construction of Mental Model: refers to understanding the structure, components, intended
logic and actual behavior of the program

2. Identification of Discrepancies: refers to recognizing the difference between the intended and
actual behavior of the code

3. Interpretation of Discrepancies: refers to the creation of hypotheses on possible locations of
the fault

4. Generation and Validation of Solution: Refers to the identification and resolution of the bug,
ensuring the program’s correctness, and checking for any further issues or bugs.

3. Research Questions

In this study, we aim to investigate the following research questions,

• RQ1: What usability challenges and learning barriers do novice programmers encounter when
debugging code and interacting with IDE-integrated debuggers?

• RQ2: How do the latest LLMs perform on a newly constructed debugging dataset designed to
address the limitations of previous datasets?

• RQ3: How can LLMs be used to teach novices debugging and how to navigate debuggers?

4. Methodology

4.1. Interviews

Interviews will be conducted either in person or online to gather a more detailed and thorough insights
into participants’ debugging processes and experiences with debugging and debugging tools. The
interviews will also examine their interactions with LLMs for programming and debugging purposes.
The responses from the interviews will undergo thematic analysis to systematically identify recurring
themes and patterns. By analyzing participants’ experiences and preferences through thematical
analysis, the study aims to uncover key challenges and areas where a LLM-based tool can provide
meaningful improvements. Additionally, the interviews could uncover important roles, insights or
lessons where LLMs can provide support or teach.

4.2. Dataset Construction

To address the limitations identified in previous research, the dataset will be carefully curated to
overcome these challenges. It will consist of programming problems with buggy submitted solutions
of varying difficulty levels sourced from AtCoder4, a competitive programming platform. To ensure
that the problems and buggy codes are not present in the training data of the language models, only
problems from contests that occurred after the models’ training cutoffs will be utilized. Problems and
buggy solutions will be scraped using a custom Python script leveraging and compiled into a csv file.
Additionally, the dataset will be designed to cover a wide range of bug types to ensure diversity to
better test the LLM’s capability.

4https://atcoder.jp/

https://atcoder.jp/
https://atcoder.jp/

4.3. LLM Evaluation

After the construction of the debugging dataset, a variety of LLMs will be evaluated using it, including
DeepSeek-V3, GPT-4o, Llama-4-Maverick, Quasar-Alpha, and Gemini-Exp-1206. These LLMs were
selected for their top performance on the BigCodeBench dataset [34]. Based on preliminary surveys
and interviews, the various LLMs will be tested using different prompting strategies: zero-shot, one-
shot, or few-shot, depending on how users typically interact with them. To ensure consistency and
comparability among models, the same prompts will be used for each LLM under the same evaluation
condition. The output of each LLM for each problem in the dataset would then be submitted in AtCoder
and will evaluate its correctness.

4.4. Prototype and Development

After the best performing LLM is determined, the framework created by Li et al. (2019) [32] will serve
as one of the foundations of this tool wherein the LLM will be utilized in order to teach novices the
debugging process and different types of knowledge mentioned in section 2.3 in order to effectively
enhance the debugging skills of novices. In addition, the insights gained from the thematic analysis of
the interviews will also inform and guide the iterative prototyping process. The process will involve
creating both low- and high-fidelity prototypes using Figma. After each iteration, usability testing will
be conducted online on around 5 participants in order to observe user behavior and identify any issues
or areas of confusion. There will be a total of 3 iterations but this number may vary depending on the
feedback and insights gathered from each round of usability testing. Additionally, a brief interview will
be held post-testing to gather user feedback and insights wherein thematic analysis will be performed
in order to gather common themes. This approach aims to ensure that the design and usability of the
interface align with users’ needs and expectations.

Once the design is finalized, the researchwill advance to the development phase of the tool. LangChain
will be employed to seamlessly integrate different LLMs into the system. During this phase, thorough
testing will be carried out to detect and fix bugs, verify core functionalities, and ensure the tool behaves
as intended across various scenarios. Any issues identified during this process will be addressed to
refine and optimize the tool to ensure that the final version is reliable and effective that supports the
intended debugging tasks.

4.5. Pre-Post Between-Subjects Experiment

Upon completion of the tool, a pre-post between-subjects design will be employed to evaluate the
tool’s effectiveness in improving debugging skills. Participants will be randomly assigned to either the
experimental group, which will have access to the debugging tool, or the control group, which will not
have access. The study will begin with a pre-test to establish a baseline of participants’ debugging skills.
Both the experimental and control groups will be given the same set of C programming debugging
tasks that simulate real-world coding problems. After the pre-test, the experimental group will engage
with the debugging tool for a one-week intervention period, although the duration may be extended
based on user feedback. In the post-test, participants will be given a set of C programming tasks of
similar difficulty to the pre-test to assess their performance and determine the effectiveness of the
tool in improving debugging skills. The debugging tasks will cover a wide range of bugs, ensuring a
thorough evaluation of both the participants’ performance and the tool’s impact on enhancing their
debugging abilities. In addition, the sample size for the experiment will be determined based on a
Power Analysis to ensure sufficient statistical power to detect meaningful differences between the
experimental and control groups.

To thoroughly evaluate the effectiveness of the tool, several metrics will be employed:

1. Time Taken to Resolve Defects: The amount of time each participant takes to identify and

fix each bug will be recorded which will allow the study to measure the student’s debugging
efficiency with and without the tool

2. Number of Bugs Resolved: The total number of bugs each participant successfully resolves
will be counted to determine the tool’s effectiveness.

3. UMUX-lite: After completing the tests, participants will complete a 2-item questionnaire to
provide qualitative feedback on their experience with the tool.

4. Bloom’s Taxonomy: The participants’ performance will be analyzed according to Bloom’s
Taxonomy, which evaluates cognitive skills across six levels: remembering, understanding,
applying, analyzing, evaluating, and creating. This framework will assess how well the tool
facilitates the development of higher-order thinking skills, particularly in debugging tasks, and
how it supports users in progressing through different levels of comprehension and problem-
solving.

These metrics will be crucial for evaluating the tool’s impact on the debugging process, providing
a comprehensive understanding of its effectiveness in improving both efficiency and accuracy in
debugging tasks.

4.6. Post Test Interview

A concluding semi-structured interview session will be conducted with each participant from the
experimental group to evaluate the overall effectiveness of the debugging tool. Participants will be
asked to share their experiences, insights, and feedback on various aspects of the tool, such as its
usability, functionality, and impact on their debugging process and learning. Thematic analysis will
also be used to examine the interview data. This final evaluation will provide valuable information on
the tool’s performance and will be the basis of areas for further improvement.

4.7. Scope and Limitations

This research will specifically target freshman novice programmers as the main participants of
the experiment since they are the ones who struggle the most with understanding complexities of
debugging as well as the usage of debugging tools. The participants must be first-year undergraduate
students with no more than one year of experience in programming, ensuring that their debugging
skills are in the early stages of development. Given their limited experience, they will proceed with
the experiment with a fresh perspective when navigating the tool thus allowing their interactions
with it to be unimpeded by any preconceived notions transferred from using other tools. The different
requirements and features of the tool will be primarily based on novice’s struggle and needs when
debugging. As a result, experienced and seasoned developers might perceive the tool differently, given
that it is designed primarily for novices.

In assessing the tool’s effectiveness, this research will concentrate on C programming debugging
exercises, given that C is a widely used language where novices often encounter difficulties when
programming and debugging [35].

5. Significance of the Research

This study aims to contribute to the emerging field of Human-Centered AI (HCAI) and the integration
of LLMs into IDEs. By addressing the challenges programmers face during debugging, this research
seeks to provide valuable insights that can inform the creation of more effective tools designed to
enhance programmers’ learning. Additionally, it will explore in depth on how users interact with LLMs,
particularly in debugging scenarios, to gain a deeper understanding of their usage patterns.

As this is a relatively new research area and AI-assisted debugging—existing literature remains
limited, with much of the focus centered on ChatGPT. To bridge this gap, this study aims to evaluate

the latest top performing LLMs, assessing their effectiveness in debugging tasks. Furthermore, many
existing debugging datasets present challenges such as data leakage, where LLMs may have already
been trained on or exposed to these datasets. To address this issue, this research will develop a new
dataset specifically designed to ensure that current LLMs do not have prior knowledge of its contents.

Overall, this study will assess how AI can teach novice programmers, enhance their learning, and
improve their debugging processes. Beyond benefiting novices, the findings will also serve as a
foundation for the future development of AI-driven debugging tools.

References

[1] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, C. Zander, Debugging from the student
perspective, IEEE Transactions on Education 53 (2010) 390–396. doi:10.1109/TE.2009.2025266.

[2] W. E. Wong, X. Li, P. A. Laplante, Be more familiar with our enemies and pave the way forward:
A review of the roles bugs played in software failures, Journal of Systems and Software 133 (2017)
68–94. doi:10.1016/j.jss.2017.06.069.

[3] C. Parnin, A. Orso, Are automated debugging techniques actually helping programmers?, in:
Proceedings of the 2011 International Symposium on Software Testing and Analysis, 2011, pp.
199–209. doi:10.1145/2001420.2001445.

[4] A. Ang, A. Perez, A. Van Deursen, R. Abreu, Revisiting the practical use of automated software
fault localization techniques, in: 2017 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2017, pp. 175–182. doi:10.1109/ISSREW.2017.68.

[5] J. Whalley, A. Settle, A. Luxton-Reilly, Novice reflections on debugging, in: Proceedings of the
52nd ACM Technical Symposium on Computer Science Education, 2021, pp. 73–79. doi:10.1145/
3408877.3432374.

[6] M. Beller, N. Spruit, D. Spinellis, A. Zaidman, On the dichotomy of debugging behavior among
programmers, in: Proceedings of the 40th International Conference on Software Engineering,
2018, pp. 572–583.

[7] R. Law, An overview of debugging tools, ACM SIGSOFT Software Engineering Notes 22 (1997)
43–47. doi:10.1145/251880.251926.

[8] A. Afzal, C. L. Goues, A study on the use of ide features for debugging, in: Proceedings of the
15th International Conference on Mining Software Repositories, 2018, pp. 114–117. doi:10.1145/
3196398.3196468.

[9] M. Ko, D. B. Bose, H. A. Chowdhury, M. Seyam, C. Brown, Exploring the barriers and factors
that influence debugger usage for students, in: 2023 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), IEEE, 2023, pp. 168–172. URL: https://chbrown13.github.io/
papers/vlhcc23_debug.pdf. doi:10.1109/VL-HCC57772.2023.00027.

[10] A. Böttcher, V. Thurner, K. Schlierkamp, D. Zehetmeier, Debugging students’ debugging process,
in: 2016 IEEE Frontiers in Education Conference (FIE), IEEE, 2016, pp. 1–7. doi:10.1109/FIE.2016.
7757447.

[11] Q. Zhang, Y. Zhao, W. Sun, C. Fang, Z. Wang, L. Zhang, H. ... Yang, Program repair via semantic
search: A large-scale empirical study, IEEE Transactions on Software Engineering 48 (2022)
3876–3895. doi:10.1109/TSE.2021.3084157.

[12] Q. Zhang, C. Fang, Y. Xie, Y. Ma, W. Sun, Y. Y. Z. Chen, A systematic literature review on
large language models for automated program repair, arXiv preprint arXiv:2405.01466 (2024).
doi:10.48550/arXiv.2405.01466.

[13] K. Huang, Z. Xu, S. Yang, H. Sun, X. Li, Z. Yan, Y. Zhang, A survey on automated program repair
techniques, arXiv preprint arXiv:2303.18184 (2023). doi:10.48550/arXiv.2303.18184.

[14] M. M. Rahman, Y. Watanobe, Chatgpt for education and research: Opportunities, threats, and
strategies, Applied Sciences 13 (2023) 5783. doi:10.3390/app13095783.

[15] Q. Zhang, T. Zhang, J. Zhai, C. Fang, B. Yu, W. Sun, Z. Chen, A critical review of large language

http://dx.doi.org/10.1109/TE.2009.2025266
http://dx.doi.org/10.1016/j.jss.2017.06.069
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1109/ISSREW.2017.68
http://dx.doi.org/10.1145/3408877.3432374
http://dx.doi.org/10.1145/3408877.3432374
http://dx.doi.org/10.1145/251880.251926
http://dx.doi.org/10.1145/3196398.3196468
http://dx.doi.org/10.1145/3196398.3196468
https://chbrown13.github.io/papers/vlhcc23_debug.pdf
https://chbrown13.github.io/papers/vlhcc23_debug.pdf
http://dx.doi.org/10.1109/VL-HCC57772.2023.00027
http://dx.doi.org/10.1109/FIE.2016.7757447
http://dx.doi.org/10.1109/FIE.2016.7757447
http://dx.doi.org/10.1109/TSE.2021.3084157
http://dx.doi.org/10.48550/arXiv.2405.01466
http://dx.doi.org/10.48550/arXiv.2303.18184
http://dx.doi.org/10.3390/app13095783

model on software engineering: An example from chatgpt and automated program repair, arXiv
preprint arXiv:2310.08879 (2023). URL: https://doi.org/10.48550/arXiv.2310.08879. doi:10.48550/
arXiv.2310.08879.

[16] D. Sobania, M. Briesch, C. Hanna, J. Petke, An analysis of the automatic bug fixing performance
of chatgpt, in: 2023 IEEE/ACM International Workshop on Automated Program Repair (APR),
IEEE, 2023, pp. 23–30. doi:10.1109/APR59189.2023.00012.

[17] C. S. Xia, L. Zhang, Keep the conversation going: Fixing 162 out of 337 bugs for $0.42 each using
chatgpt, arXiv preprint arXiv:2304.00385 (2023). doi:10.48550/arXiv.2304.00385.

[18] I. Zayour, A. Hamdar, A qualitative study on debugging under an enterprise ide, Information and
Software Technology 70 (2016) 130–139. doi:10.1016/j.infsof.2015.10.010.

[19] Y. Tao, J. Kim, S. Kim, C. Xu, Automatically generated patches as debugging aids: A human study,
in: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 64–74. doi:10.1145/2635868.2635873.

[20] J. T. Liang, C. Yang, B. A. Myers, A large-scale survey on the usability of ai programming assistants:
Successes and challenges, in: Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–13. doi:10.1145/3597503.3608128.

[21] X. Tan, X. Long, X. Ni, Y. Zhu, J. Jiang, L. Zhang, How far are ai-powered programming assistants
from meeting developers’ needs?, arXiv preprint arXiv:2404.12000 (2024). URL: https://arxiv.org/
pdf/2404.12000.

[22] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, A. ... Mian, A comprehensive
overview of large language models, arXiv preprint arXiv:2307.06435 (2023). URL: https://arxiv.
org/pdf/2307.06435.

[23] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, D. C. ... Schmidt, A prompt pattern
catalog to enhance prompt engineering with chatgpt, arXiv preprint arXiv:2302.11382 (2023). URL:
https://file.mixpaper.cn/paper_store/2023/681177f8-cd15-4e0f-a23b-997c6b9f9dd2.pdf.

[24] J. Kocoń, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szydło, J. Baran, P. ... Kazienko, Chatgpt: Jack
of all trades, master of none, Information Fusion 99 (2023) 101861. doi:10.1016/j.inffus.2023.
101861.

[25] S. Ouyang, J. M. Zhang, M. Harman, M. Wang, An empirical study of the non-determinism of
chatgpt in code generation, ACM Transactions on Software Engineering and Methodology 34
(2025) 1–28. doi:10.1145/3697010.

[26] T. Sakirin, R. B. Said, User preferences for chatgpt-powered conversational interfaces versus
traditional methods, Mesopotamian Journal of Computer Science (2023) 22–28. URL: https://
mesopotamian.press/journals/index.php/cs/article/download/45/70.

[27] A. Shoufan, Exploring students’ perceptions of chatgpt: Thematic analysis and follow-up survey,
IEEE Access 11 (2023) 38805–38818. doi:10.1109/ACCESS.2023.3268224.

[28] Q. Zhang, C. Fang, Y. Ma, W. Sun, Z. Chen, A survey of learning-based automated program
repair, ACM Transactions on Software Engineering and Methodology 33 (2023) 1–69. doi:10.
1145/3631974.

[29] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, G. ... Kasneci, Chatgpt
for good? on opportunities and challenges of large language models for education, Learning and
Individual Differences 103 (2023) 102274. doi:10.1016/j.lindif.2023.102274.

[30] R. Tian, Y. Ye, Y. Qin, X. Cong, Y. Lin, Y. Pan, M. ... Sun, Debugbench: Evaluating debugging
capability of large language models, arXiv preprint arXiv:2401.04621 (2024). URL: https://arxiv.
org/pdf/2401.04621.

[31] T. Michaeli, R. Romeike, Improving debugging skills in the classroom: The effects of teaching a
systematic debugging process, in: Proceedings of the 14th Workshop in Primary and Secondary
Computing Education (WiPSCE), ACM, 2019, pp. 1–7. URL: https://computingeducation.de/pub/
2019_Michaeli-Romeike_WIPSCE19.pdf. doi:10.1145/3361721.3362121.

[32] C. Li, E. Chan, P. Denny, A. Luxton-Reilly, E. Tempero, Towards a framework for teaching
debugging, in: Proceedings of the Twenty-First Australasian Computing Education Conference,
2019, pp. 79–86. doi:10.1145/3286960.3286970.

https://doi.org/10.48550/arXiv.2310.08879
http://dx.doi.org/10.48550/arXiv.2310.08879
http://dx.doi.org/10.48550/arXiv.2310.08879
http://dx.doi.org/10.1109/APR59189.2023.00012
http://dx.doi.org/10.48550/arXiv.2304.00385
http://dx.doi.org/10.1016/j.infsof.2015.10.010
http://dx.doi.org/10.1145/2635868.2635873
http://dx.doi.org/10.1145/3597503.3608128
https://arxiv.org/pdf/2404.12000
https://arxiv.org/pdf/2404.12000
https://arxiv.org/pdf/2307.06435
https://arxiv.org/pdf/2307.06435
https://file.mixpaper.cn/paper_store/2023/681177f8-cd15-4e0f-a23b-997c6b9f9dd2.pdf
http://dx.doi.org/10.1016/j.inffus.2023.101861
http://dx.doi.org/10.1016/j.inffus.2023.101861
http://dx.doi.org/10.1145/3697010
https://mesopotamian.press/journals/index.php/cs/article/download/45/70
https://mesopotamian.press/journals/index.php/cs/article/download/45/70
http://dx.doi.org/10.1109/ACCESS.2023.3268224
http://dx.doi.org/10.1145/3631974
http://dx.doi.org/10.1145/3631974
http://dx.doi.org/10.1016/j.lindif.2023.102274
https://arxiv.org/pdf/2401.04621
https://arxiv.org/pdf/2401.04621
https://computingeducation.de/pub/2019_Michaeli-Romeike_WIPSCE19.pdf
https://computingeducation.de/pub/2019_Michaeli-Romeike_WIPSCE19.pdf
http://dx.doi.org/10.1145/3361721.3362121
http://dx.doi.org/10.1145/3286960.3286970

[33] D. H. Jonassen, W.-C. Hung, Learning to troubleshoot: A new theory-based design architecture,
Educational Psychology Review 18 (2006) 77–114. doi:10.1007/s10648-006-9001-8.

[34] T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu, R. Widyasari, I. N. B. Yusuf, H. Zhan, J. He, I. Paul,
et al., Bigcodebench: Benchmarking code generation with diverse function calls and complex
instructions, arXiv preprint arXiv:2406.15877 (2024).

[35] M. Heinsen Egan, C. McDonald, An evaluation of seec: a tool designed to assist novice c program-
mers with program understanding and debugging, Computer Science Education 31 (2021) 340–373.
doi:10.1080/08993408.2020.1777034.

http://dx.doi.org/10.1007/s10648-006-9001-8
http://dx.doi.org/10.1080/08993408.2020.1777034

	1 Introduction
	2 Review of Related Literature
	2.1 Debugging Tools Experience
	2.2 Large Language Models (LLMs)
	2.3 Teaching Debugging

	3 Research Questions
	4 Methodology
	4.1 Interviews
	4.2 Dataset Construction
	4.3 LLM Evaluation
	4.4 Prototype and Development
	4.5 Pre-Post Between-Subjects Experiment
	4.6 Post Test Interview
	4.7 Scope and Limitations

	5 Significance of the Research

